

On Solving Asymmetric Diagonally Dominant Linear Systems in Sublinear Time

Tsz Chiu Kwok¹ Zhewei Wei² **Mingji Yang²**

¹Shanghai University of Finance and Economics

²Renmin University of China

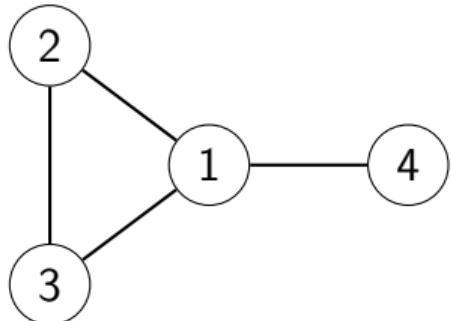
ITCS 2026

Background: Nearly-Linear-Time Laplacian/SDD Solvers

- solving system of linear equations is a fundamental problem
- solvers for special classes of systems have been extensively studied
- breakthrough: nearly-linear-time solvers for **Laplacian / symmetric diagonally dominant (SDD)** systems [Spielman-Teng '04]
- \Rightarrow Laplacian Paradigm

Background: Laplacian/SDD Systems

- graph Laplacian $\mathbf{L}_G = \mathbf{D}_G - \mathbf{A}_G$
- \mathbf{D}_G : diagonal degree matrix, \mathbf{A}_G : adjacency matrix
- an example **Laplacian system**:



$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}(1) \\ \mathbf{x}(2) \\ \mathbf{x}(3) \\ \mathbf{x}(4) \end{pmatrix} = \begin{pmatrix} \mathbf{b}(1) \\ \mathbf{b}(2) \\ \mathbf{b}(3) \\ \mathbf{b}(4) \end{pmatrix}$$

- an example **symmetric diagonally dominant (SDD) system**:

$$\begin{pmatrix} 3 & 0 & 1 & -0.5 \\ 0 & 2 & -1 & 0 \\ 1 & -1 & 2 & 0 \\ -0.5 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}(1) \\ \mathbf{x}(2) \\ \mathbf{x}(3) \\ \mathbf{x}(4) \end{pmatrix} = \begin{pmatrix} \mathbf{b}(1) \\ \mathbf{b}(2) \\ \mathbf{b}(3) \\ \mathbf{b}(4) \end{pmatrix}$$

Background: Nearly-Linear-Time RDD/CDD Solvers

- generalization to nearly-linear-time **row/column diagonally dominant** (RDD/CDD) solvers [CKPPSV '16] [CKKPPRS '18]
- an example RDD system:

$$\begin{pmatrix} 4 & -2 & 2 \\ 1 & 3 & -1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} \mathbf{x}(1) \\ \mathbf{x}(2) \\ \mathbf{x}(3) \end{pmatrix} = \begin{pmatrix} \mathbf{b}(1) \\ \mathbf{b}(2) \\ \mathbf{b}(3) \end{pmatrix}$$

- CDD systems are defined in the natural column-wise way

Sublinear-Time Solvers

- [Andoni-Krauthgamer-Pogrow, ITCS '19]: algorithm for **solving a single entry** of “well-conditioned” SDD systems in sublinear time
- a natural question: can we solve RDD/CDD systems in sublinear time?
- our answer: yes for “well-structured” RDD/CDD systems
 - provided that we properly characterize what it means by “well-structured”

Problem Formulation

- for an RDD/CDD system $\mathbf{M}\mathbf{x} = \mathbf{b}$ where $\mathbf{M} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \text{range}(\mathbf{M})$
- given standard oracle access to \mathbf{M} , \mathbf{b} , and \mathbf{t}
- **our goal:** compute an approximation of $\mathbf{t}^\top \mathbf{x}^*$
- where \mathbf{x}^* is a particular solution to the system determined by \mathbf{M} and \mathbf{b}
- examples: single-pair *Personalized PageRank* and *effective resistance* on graphs

Main Contributions

- ① **generalization** of the formulation and results in [AKP19] to RDD/CDD systems, via generalizing **spectral gap** to a novel concept called **maximum p -norm gap**
- ② **more complexity upper bounds** by adapting techniques for local graph algorithms: **random-walk sampling**, **local push**, and **bidirectional method**

a **general and unified framework** for understanding local solvers and graph algorithms

Contents

- 1 Introduction
- 2 Power Series Convergence and Maximum p -Norm Gap
- 3 PageRank and Effective Resistance as Special Cases
- 4 Algorithms
- 5 Conclusions and Open Problems

Power Series Expansion of x^*

- we decompose \mathbf{M} as $\mathbf{M} = \mathbf{D}_\mathbf{M} - \mathbf{A}_\mathbf{M}$, with $\mathbf{D}_\mathbf{M}$ being the diagonal part
- **for certain types of \mathbf{M}** , we have

$$\mathbf{M}x = \mathbf{b} \iff (\mathbf{I} - \mathbf{D}_\mathbf{M}^{-1} \mathbf{A}_\mathbf{M}) x = \mathbf{D}_\mathbf{M}^{-1} \mathbf{b} \iff x = \sum_{\ell=0}^{\infty} (\mathbf{D}_\mathbf{M}^{-1} \mathbf{A}_\mathbf{M})^\ell \mathbf{D}_\mathbf{M}^{-1} \mathbf{b}$$

- to guarantee convergence for general RDD/CDD \mathbf{M} , we choose

$$x^* := \frac{1}{2} \sum_{\ell=0}^{\infty} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_\mathbf{M}^{-1} \mathbf{A}_\mathbf{M}) \right)^\ell \mathbf{D}_\mathbf{M}^{-1} \mathbf{b}$$

Theorem (Property of x^*)

- ① x^* is well-defined and satisfies $\mathbf{M}x^* = \mathbf{b}$;
- ② if \mathbf{M} is SDD, then $x^* = \mathbf{D}_\mathbf{M}^{-1/2} \left(\mathbf{D}_\mathbf{M}^{-1/2} \mathbf{M} \mathbf{D}_\mathbf{M}^{-1/2} \right)^+ \mathbf{D}_\mathbf{M}^{-1/2} \mathbf{b}$, matching [AKP19].

Truncated Power Series

$$\mathbf{x}^* := \frac{1}{2} \sum_{\ell=0}^{\infty} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M) \right)^\ell \mathbf{D}_M^{-1} \mathbf{b}$$

- for a truncation parameter L (to be determined later), we approximate \mathbf{x}^* by

$$\mathbf{x}_L^* := \frac{1}{2} \sum_{\ell=0}^{L-1} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M) \right)^\ell \mathbf{D}_M^{-1} \mathbf{b}$$

- we need to upper bound $|\mathbf{t}^\top \mathbf{x}_L^* - \mathbf{t}^\top \mathbf{x}^*| \leq \varepsilon$ in terms of some quantity of \mathbf{M}

p -Norm Gaps: Intuition

$$\mathbf{x}^* := \frac{1}{2} \sum_{\ell=0}^{\infty} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M) \right)^\ell \mathbf{D}_M^{-1} \mathbf{b}$$

- intuitively, stronger diagonal dominance of \mathbf{M} implies faster convergence
- if \mathbf{M} is RDD, consider $1 - \|\mathbf{D}_M^{-1} \mathbf{A}_M\|_\infty = \min_{j \in [n]} \left\{ \frac{\mathbf{M}(j,j) - \sum_{k \neq j} |\mathbf{M}(j,k)|}{\mathbf{M}(j,j)} \right\} \geq 0$
- if \mathbf{M} is CDD, the quantity is $1 - \|\mathbf{A}_M \mathbf{D}_M^{-1}\|_1 \geq 0$
- this hints us to consider the quantity $1 - \left\| \mathbf{D}_M^{-1/q} \mathbf{A}_M \mathbf{D}_M^{-1/p} \right\|_p$
 - $p \in [1, \infty]$, $1/p + 1/q = 1$
- however, this quantity can be zero, making it useless

p -Norm Gaps

- we define the **p -norm gap** of \mathbf{M} as

$$\gamma_p(\mathbf{M}) := 1 - \left\| \frac{1}{2} \left(\mathbf{I} + \mathbf{D}_\mathbf{M}^{-1/q} \mathbf{A}_\mathbf{M} \mathbf{D}_\mathbf{M}^{-1/p} \right) \Big|_{\text{range}(\mathbf{I} - \mathbf{D}_\mathbf{M}^{-1/q} \mathbf{A}_\mathbf{M} \mathbf{D}_\mathbf{M}^{-1/p})} \right\|_p,$$

where $p \in [1, \infty]$, $1/p + 1/q = 1$

- **maximum p -norm gap:** $\gamma_{\max}(\mathbf{M}) := \max_{p \in [1, \infty]} \gamma_p(\mathbf{M})$

Theorem (Maximum p -Norm Gap)

- ① If \mathbf{M} is RDD/CDD, then $0 < \gamma_{\max}(\mathbf{M}) \leq 1$;
- ② if \mathbf{M} is SDD, then $\gamma_{\max}(\mathbf{M}) = \gamma_2(\mathbf{M}) = \gamma(\mathbf{M})$, the **spectral gap** of \mathbf{M} .

Truncation Error in Terms of the Maximum p -Norm Gap

Theorem (Truncation Error Bound)

Suppose $0 < \gamma \leq \gamma_{\max}(\mathbf{M})$. To ensure that $|\mathbf{t}^\top \mathbf{x}_L^* - \mathbf{t}^\top \mathbf{x}^*| \leq \varepsilon$, it suffices to set

$$L := \tilde{\Theta} \left(\frac{1}{\gamma} \right).$$

- our formulation reduces to that in [AKP19] when \mathbf{M} is SDD

Contents

- 1 Introduction
- 2 Power Series Convergence and Maximum p -Norm Gap
- 3 PageRank and Effective Resistance as Special Cases
- 4 Algorithms
- 5 Conclusions and Open Problems

Interpreting PageRank Computation



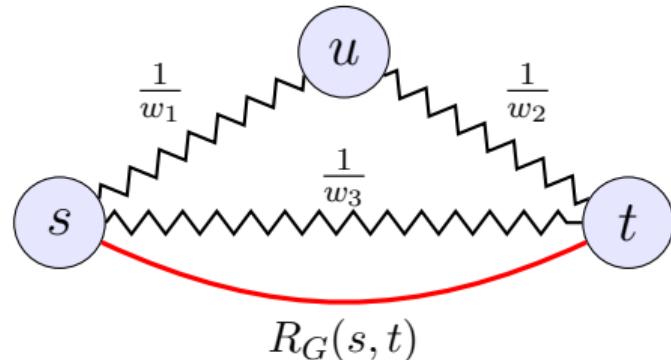
- **Personalized PageRank vector:** $\pi_{G,\alpha,s} = \alpha s + (1 - \alpha) \mathbf{A}_G^\top \mathbf{D}_G^{-1} \pi_{G,\alpha,s}$

- $\alpha \in (0, 1)$ is the decay factor
- s is the source probability distribution
- \mathbf{D}_G is the diagonal outdegree matrix

$$\text{equivalently, } (\mathbf{D}_G - (1 - \alpha) \mathbf{A}_G^\top) (\mathbf{D}_G^{-1} \pi_{G,\alpha,s}) = \alpha s$$

- $\mathbf{D}_G - (1 - \alpha) \mathbf{A}_G^\top$ is invertible CDD and is SDD for undirected G
- $\frac{1}{2}\alpha$ lower bounds the maximum p -norm gap of $\mathbf{D}_G - (1 - \alpha) \mathbf{A}_G^\top$

Interpreting Effective Resistance Computation



- consider connected undirected graph G
- **effective resistance** $R_G(s, t) = (\mathbf{e}_s - \mathbf{e}_t)^\top \mathbf{L}_G^+ (\mathbf{e}_s - \mathbf{e}_t)$
- when $\mathbf{M} = \mathbf{L}_G$, $\mathbf{b} = \mathbf{t} = \mathbf{e}_s - \mathbf{e}_t$ in our framework, $\mathbf{t}^\top \mathbf{x}^* = R_G(s, t)$
- \mathbf{L}_G is SDD
- $\gamma_{\max}(\mathbf{L}_G) = \gamma(\mathbf{L}_G)$, the spectral gap

Contents

1 Introduction

2 Power Series Convergence and Maximum p -Norm Gap

3 PageRank and Effective Resistance as Special Cases

4 Algorithms

5 Conclusions and Open Problems

Random-Walk Sampling (1/2)

- we aim to estimate:

$$\mathbf{t}^\top \mathbf{x}_L^* = \frac{1}{2} \mathbf{t}^\top \sum_{\ell=0}^{L-1} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M) \right)^\ell \mathbf{D}_M^{-1} \mathbf{b}$$

- when \mathbf{M} is RDD, $\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} |\mathbf{A}_M|)$ is row substochastic
- we can estimate the quantity by **sampling random walks** of length $\ell \in [0, L-1]$
- the random walk starts from distribution $|\mathbf{t}|/\|\mathbf{t}\|_1$ and transitions via $\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} |\mathbf{A}_M|)$

Random-Walk Sampling (2/2)

using the Hoeffding bound, we prove:

Theorem

- Suppose \mathbf{M} is RDD and we are given $0 < \gamma \leq \gamma_{\max}(\mathbf{M})$.
- Suppose we can simulate one step of the random walk in $O(1)$ time.
- Then there exists a randomized algorithm that computes an estimate \hat{x} such that $\Pr \{ |\hat{x} - \mathbf{t}^\top \mathbf{x}^*| \leq \varepsilon \|\mathbf{D}_\mathbf{M}^{-1} \mathbf{b}\|_\infty \} \geq \frac{3}{4}$ in time

$$\tilde{O} \left(\|\mathbf{t}\|_1^2 \gamma^{-3} \varepsilon^{-2} \right).$$

- this generalizes the algorithmic result in [AKP19] for SDD systems
- [AKP19] proves a complexity lower bound of $\tilde{\Omega} \left(1/\gamma_{\max}(\mathbf{M})^2 \right)$
- we prove a complexity lower bound of $\Omega(1/\varepsilon)$

Counterparts for CDD Systems

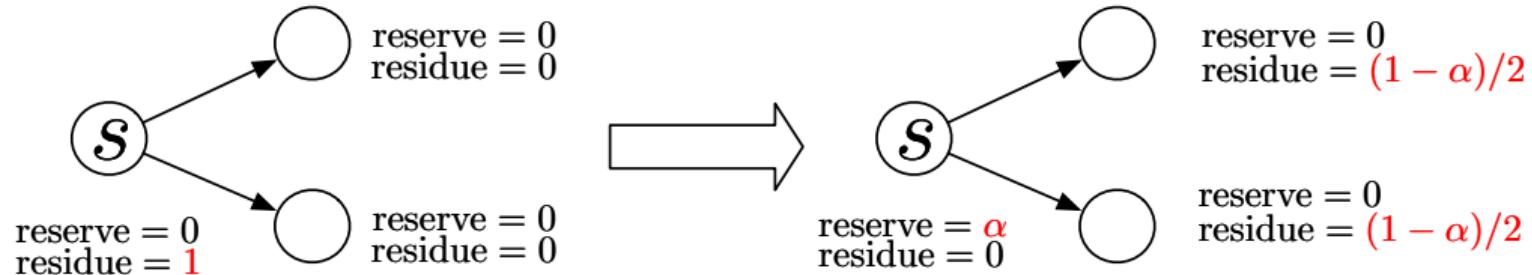
- we have

$$\begin{aligned} t^\top x_L^* &= \frac{1}{2} \mathbf{t}^\top \sum_{\ell=0}^{L-1} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M^\top) \right)^\ell \mathbf{D}_M^{-1} \mathbf{b} \\ &= \frac{1}{2} \mathbf{b}^\top \sum_{\ell=0}^{L-1} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M^\top) \right)^\ell \mathbf{D}_M^{-1} \mathbf{t} \end{aligned}$$

- if \mathbf{M} is CDD, $\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} |\mathbf{A}_M^\top|)$ is row substochastic
- results for RDD systems can be adapted to CDD ones by **swapping the roles of b and t**

Local Push: Forward Push for PageRank

- push operation [Andersen-Chung-Lang '06] for computing single-source PageRank:



- iteratively perform push operations until all residues are small
- reserves** serve as the estimate for π_{G,α,e_s}
- residues** capture the approximation error through an **invariant** equation

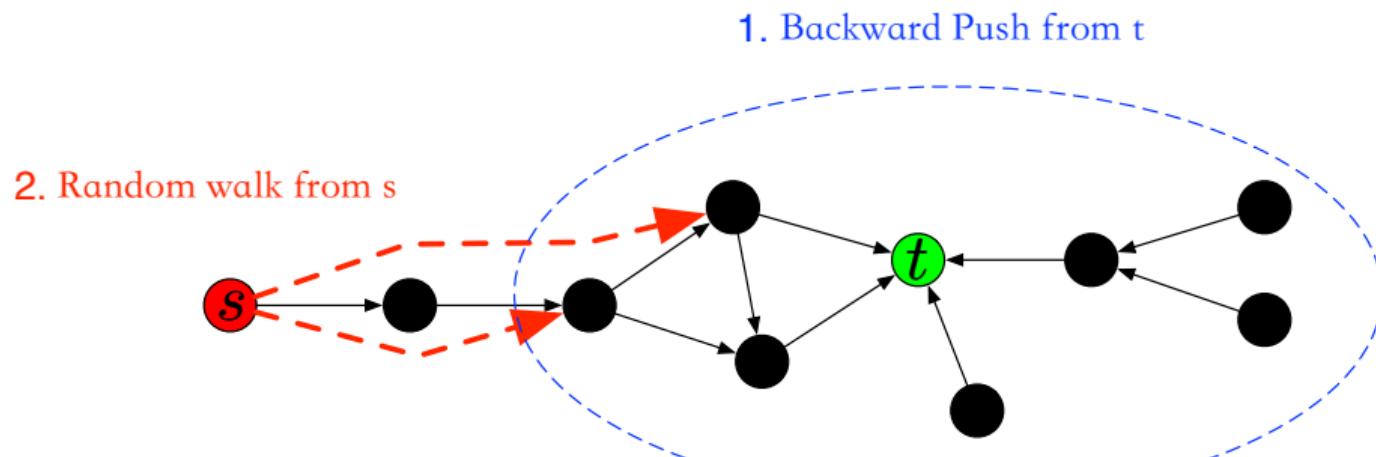
The Algebraic Push Primitive

$$\mathbf{x}_L^* = \frac{1}{2} \sum_{\ell=0}^{L-1} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M) \right)^\ell \mathbf{D}_M^{-1} \mathbf{b}$$

- Push initializes residues as $\mathbf{D}_M^{-1} \mathbf{b}$
- propagates residues via $\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M)$
- if M is RDD, Push admits closed-form **accuracy guarantee**
- if M is CDD, Push admits closed-form **complexity bound**
- for RCDD systems, Push admits both accuracy and complexity bounds

The Bidirectional Method (1/2)

- BiPPR [Lofgren-Banerjee-Goel '16] for estimating $\pi_{G,\alpha,e_s}(t)$



The Bidirectional Method (2/2)

- we aim to estimate:

$$\mathbf{t}^\top \mathbf{x}_L^* = \frac{1}{2} \mathbf{t}^\top \sum_{\ell=0}^{L-1} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M) \right)^\ell \mathbf{D}_M^{-1} \mathbf{b}$$

- the invariant property of Push implies that

$$\begin{aligned} \mathbf{t}^\top \mathbf{x}_L^* - \frac{1}{2} \mathbf{t}^\top \left(\sum_{\ell=0}^{L-1} \mathbf{p}^{(\ell)} + \mathbf{r}^{(L-1)} \right) \\ = \frac{1}{2} \mathbf{t}^\top \sum_{\ell=0}^{L-1} \left(\frac{1}{2} (\mathbf{I} + \mathbf{D}_M^{-1} \mathbf{A}_M) \right)^\ell \left(\sum_{\ell'=0}^{\min(L-\ell-1, L-2)} \mathbf{r}^{(\ell')} \right) \end{aligned}$$

- when \mathbf{M} is RDD, we can sample random walks to estimate this difference
- method: Push from $\mathbf{D}_M^{-1} \mathbf{b}$ + random-walk sampling from \mathbf{t} + parameter balancing

Contents

- 1 Introduction
- 2 Power Series Convergence and Maximum p -Norm Gap
- 3 PageRank and Effective Resistance as Special Cases
- 4 Algorithms
- 5 Conclusions and Open Problems

Conclusions and Open Problems

Conclusions

- “well-structured” RDD/CDD systems can be solved in sublinear time
- this general framework unifies sublinear SDD solvers and local graph algorithms for PageRank / effective resistance estimation

Open Problems

- bridge the gaps between upper and lower bounds
- relate the p -norm gaps to combinatorial properties
- find more applications of sublinear RDD/CDD solvers

- Thank you!