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Background: Nearly-Linear-Time Laplacian/SDD Solvers

@ solving system of linear equations is a fundamental problem

@ solvers for special classes of systems have been extensively studied
@ breakthrough: nearly-linear-time solvers for Laplacian / symmetric diagonally dominant

(SDD) systems [Spielman-Teng '04]
@ — Laplacian Paradigm
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Background: Laplacian/SDD Systems
@ graph Laplacian Lg = Dg — Ag

e e D¢: diagonal degree matrix, Ag: adjacency matrix
@ an example Laplacian system:
a a 3 -1 -1 -1\ /=(1) b(1)
-1 2 -1 0 z(2) |  [b(2)
e ~1 -1 2 o0 ||z®) ] |b0B)
1 0 0 1) \a@ b(4)
@ an example symmetric diagonally dominant (SDD) system:
30 1 —05\ /z(1) b(1)
0 2 -1 0 x(2)| | b(?2)
1 -1 2 0 z(3)| | b3)
—-05 0 O 1 x(4) b(4)
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Background: Nearly-Linear-Time RDD/CDD Solvers

@ generalization to nearly-linear-time row/column diagonally dominant (RDD/CDD) solvers
[CKPPSV '16] [CKKPPRS '18]

@ an example RDD system:

4 =2 2\ [=z(1) b(1)
1 3 —1][=®2)]=(b©)
-1 0 2/ \«@3) b(3)

@ CDD systems are defined in the natural column-wise way
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Sublinear-Time Solvers

@ [Andoni-Krauthgamer-Pogrow, ITCS '19]: algorithm for solving a single entry of
“well-conditioned” SDD systems in sublinear time

@ a natural question: can we solve RDD/CDD systems in sublinear time?

@ our answer: yes for “well-structured” RDD/CDD systems
e provided that we properly characterize what it means by “well-structured”
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Problem Formulation

for an RDD/CDD system Max = b where M € R"*" and b € range(M)
given standard oracle access to M, b, and ¢

our goal: compute an approximation of ¢ z*

where x* is a particular solution to the system determined by M and b

@ examples: single-pair Personalized PageRank and effective resistance on graphs
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Main Contributions

@ generalization of the formulation and results in [AKP19] to RDD/CDD systems, via
generalizing spectral gap to a novel concept called maximum p-norm gap

@ more complexity upper bounds by adapting techniques for local graph algorithms:
random-walk sampling, local push, and bidirectional method

a general and unified framework for understanding local solvers and graph algorithms
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Contents

© Power Series Convergence and Maximum p-Norm Gap
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Power Series Expansion of x*

@ we decompose M as M = Dy; — Ang, with Dy being the diagonal part

o for certain types of M, we have
> ‘

Mz =b < (I-DyjAm)z=Dyb < x=>) (D,/Ay) Dyb

=0

@ to guarantee convergence for general RDD/CDD M, we choose

1 /1 ¢
._ ~1 —1
ot = 52 (_2 (I+DMAM)> Dy, b
(=0
Theorem (Property of a*)

@ x* is well-defined and satisfies Mx* = b;

+
@ if M is SDD, then 2* = Dy’ (Dy/*MDy/?) " Dy;/%b, matching [AKP19].
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Truncated Power Series

. 1 &1 _ b
z ;_2;:%(2 (I+DMlAM)) Dy b

e for a truncation parameter L (to be determined later), we approximate x* by

L=5 9 M M M
(=0

@ we need to upper bound !tij‘: — tTm*’ < ¢ in terms of some quantity of M
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p-Norm Gaps: Intuition

00 l
z* = ;Z( (I+Dy 1AM)) Dy b

intuitively, stronger diagonal dominance of M implies faster convergence

if M. is RDD, consider 1 — Dy} A, = minep,) { 202t 001

>0

if M is CDD, the quantity is 1 — [[ApDy ||, >0

this hints us to consider the quantity 1 — HDR/E/‘]AMDR/}/T)H
P

e pel,oo], 1/p+1/qg=1
however, this quantity can be zero, making it useless
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p-Norm Gaps

@ we define the p-norm gap of M as

1 . _
(M) =1 |5 (1+ Dy"AmDy

range(I Doy /qAMD Up) »

where p € [1,00], 1/p+1/¢=1
e maximum p-norm gap: Ymax(M) := max,c(i o] 1p(M)

Theorem (Maximum p-Norm Gap)

@ If M is RDD/CDD, then 0 < ~max(M) < 1;
@ if M is SDD, then ymax(M) = 72(M) = (M), the spectral gap of M.
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Truncation Error in Terms of the Maximum p-Norm Gap

Theorem (Truncation Error Bound)

Suppose 0 < v < Ymax(M). To ensure that |tT:cz — tT:c*| < g, it suffices to set
~ /1
L:=06 (—) .
i

e our formulation reduces to that in [AKP19] when M is SDD
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Interpreting PageRank Computation

..El“*%.

PageRank

Google

Rank #1
o Personalized PageRank vector: 7g o s = as+ (1 — a)AgDale@,s
e o € (0,1) is the decay factor
e s is the source probability distribution
e D¢ is the diagonal outdegree matrix

equivalently, <DG —(1- a)Ag) (DE;L"'G,&,S) = as

o Di — (1 —a)A/ is invertible CDD and is SDD for undirected G
° %a lower bounds the maximum p-norm gap of Dg — (1 — a)Ag
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Interpreting Effective Resistance Computation

consider connected undirected graph G

effective resistance R¢(s,t) = (es — e;) 'L (es — e;)

@ when M = Lg,b=1t=e, — e; in our framework, t'a* = Rg(s,t)
e L is SDD
® Tmax(Lg) = 7(Lg), the spectral gap
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Random-Walk Sampling (1/2)

@ we aim to estimate:
¢
Ty = tTZ< (I+Dy 1AM)> Dy, b
o when M is RDD, ! (I + D, |An|) is row substochastic

@ we can estimate the quantity by sampling random walks of length ¢ € [0, L — 1]
o the random walk starts from distribution [¢|/||t||1 and transitions via J (I + Dy [An])
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Random-Walk Sampling (2/2)

using the Hoeffding bound, we prove:

Theorem
@ Suppose M is RDD and we are given 0 < v < Yax(M).
@ Suppose we can simulate one step of the random walk in O(1) time.
@ Then there exists a randomized algorithm that computes an estimate & such that
Pr{’i — tTaz*| <eg HDK/Ileoo} > % in time

O (lltlIty—*2) -

this generalizes the algorithmic result in [AKP19] for SDD systems
[AKP19] proves a complexity lower bound of Q) (1/Ymax(M)?)

we prove a complexity lower bound of Q(1/e¢)
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Counterparts for CDD Systems

@ we have

e if M is CDD,  (I+ Dy, ]AK/ID is row substochastic
@ results for RDD systems can be adapted to CDD ones by swapping the roles of b and ¢
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Local Push: Forward Push for PageRank

@ push operation [Andersen-Chung-Lang '06] for computing single-source PageRank:

reserve = 0 reserve = 0
residue = 0 residue = (1 — a)/2
O reserve = ( O reserve = 0
reserve = 0 residue — 0 ieezzieégg = 84 residue = (1 — «)/2

residue = 1

@ iteratively perform push operations until all residues are small

@ reserves serve as the estimate for mg o e,
@ residues capture the approximation error through an invariant equation
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The Algebraic Push Primitive

L

|
—

8

%
Il
DN | =
o

1 7 ¢
<( (1+ DMlAM)> Dy;b

~
Il

0

Push initializes residues as DR/Ilb

propagates residues via % (I+ Dill An)

if M is RDD, Push admits closed-form accuracy guarantee

if M is CDD, Push admits closed-form complexity bound

o for RCDD systems, Push admits both accuracy and complexity bounds
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The Bidirectional Method (1/2)

@ BiPPR [Lofgren-Banerjee-Goel '16] for estimating g o e, (t)

1. Backward Push from t

2. Random walk from s -

s
/
)

-
-
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The Bidirectional Method (2/2)

@ we aim to estimate:

£
tTZ< (I+Dy, 1AM)> Db

@ the invariant property of Push implies that

L—-1
1
thap - ot' (Z p + r(L‘”)
/=0
min(L—{¢—1,L—2)

tTZ< (I1+Dy, 1AM))(Z > r)

=0

@ when M is RDD, we can sample random walks to estimate this difference
@ method: Push from DK/Ilb + random-walk sampling from t + parameter balancing
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Conclusions and Open Problems

Conclusions
o “well-structured” RDD/CDD systems can be solved in sublinear time

@ this general framework unifies sublinear SDD solvers and local graph algorithms for
PageRank / effective resistance estimation

Open Problems
@ bridge the gaps between upper and lower bounds
@ relate the p-norm gaps to combinatorial properties

e find more applications of sublinear RDD/CDD solvers

@ Thank you!
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